Renormalization Automated by Hopf Algebra

نویسندگان

  • David John Broadhurst
  • D. Kreimer
چکیده

It was recently shown that the renormalization of quantum field theory is organized by the Hopf algebra of decorated rooted trees, whose coproduct identifies the divergences requiring subtraction and whose antipode achieves this. We automate this process in a few lines of recursive symbolic code, which deliver a finite renormalized expression for any Feynman diagram. We thus verify a representation of the operator product expansion, which generalizes Chen’s lemma for iterated integrals. The subset of diagrams whose forest structure entails a unique primitive subdivergence provides a representation of the Hopf algebra HR of undecorated rooted trees. Our undecorated Hopf algebra program is designed to process the 24,213,878 BPHZ contributions to the renormalization of 7,813 diagrams, with up to 12 loops. We consider 10 models, each in 9 renormalization schemes. The two simplest models reveal a notable feature of the subalgebra of Connes and Moscovici, corresponding to the commutative part of the Hopf algebra HT of the diffeomorphism group: it assigns to Feynman diagrams those weights which remove zeta values from the counterterms of the minimal subtraction scheme. We devise a fast algorithm for these weights, whose squares are summed with a permutation factor, to give rational counterterms. ) [email protected]; http://physics.open.ac.uk/ d̃broadhu permanent address: Physics Dept, Open University, Milton Keynes MK7 6AA, UK ) [email protected]; http://dipmza.physik.uni-mainz.de/ k̃reimer Heisenberg Fellow, Physics Dept, Univ. Mainz, 55099 Mainz, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Renormalization Automated by Hopf Algebra Renormalization Automated by Hopf Algebra

It was recently shown that the renormalization of quantum eld theory is organized by the Hopf algebra of decorated rooted trees, whose coproduct identiies the divergences requiring subtraction and whose antipode achieves this. We automate this process in a few lines of recursive symbolic code, which deliver a nite renormalized expression for any Feynman diagram. We thus verify a representation ...

متن کامل

Noncommutative renormalization for massless QED

We study the renormalization of massless QED from the point of view of the Hopf algebra discovered by D. Kreimer. For QED, we describe a Hopf algebra of renormalization which is neither commutative nor cocommutative. We obtain explicit renormalization formulas for the electron and photon propagators, for the vacuum polarization and the electron self-energy, which are equivalent to Zimmermann’s ...

متن کامل

Hopf algebra of ribbon graphs and renormalization

Connes and Kreimer have discovered the Hopf algebra structure behind the renormalization of Feynman integrals. We generalize the Hopf algebra to the case of ribbon graphs, i.e. to the case of theories with matrix fields. The Hopf algebra is naturally defined in terms of surfaces corresponding to ribbon graphs. As an example, we discuss the renormalization of Φ4 theory and the 1/N expansion.

متن کامل

Hopf Algebras, Renormalization and Noncommutative Geometry

We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of tranverse index theory for foliations.

متن کامل

The core Hopf algebra

We study the core Hopf algebra underlying the renormalization Hopf algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1999